KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), a calcium/calmodulin-dependent protein kinase II inhibitor, is a direct extracellular blocker of voltage-gated potassium channels.

نویسندگان

  • Saman Rezazadeh
  • Thomas W Claydon
  • David Fedida
چکیده

The effect of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) on voltage-gated ion channels is widely studied through the use of specific CaMK II blockers such as 2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine (KN-93). The present study demonstrates that KN-93 is a direct extracellular blocker of a wide range of cloned Kv channels from a number of different subfamilies. In all channels tested, the effect of 1 microM KN-93 was independent of CaMK II because 1 microM2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, phosphate (KN-92), an inactive analog of KN-93, caused similar inhibition of currents. In addition, dialysis of cells with 10 microM CaMK II inhibitory peptide fragment 281-301 (CIP) had no effect on current kinetics and did not prevent the inhibitory effect of KN-93. The IC(50) for block of the Kv1.5 channel (used as an example to determine the nature of KN-93 block) was 307 +/- 12 nM. KN-93 blocked open channels with little voltage dependence that did not alter the V(1/2) of channel activation. Removal of P/C-type inactivation by mutation of arginine 487 to valine in the outer pore region of Kv1.5 (R487V) greatly reduced KN-93 block, whereas enhancement of inactivation induced by mutation of threonine 462 to cysteine (T462C) increased the potency of KN-93 by 4-fold. This suggested that KN-93 acted through promotion and stabilization of C-type inactivation. Importantly, KN-93 was ineffective as a blocker when applied intracellularly, suggesting that CaMK II-independent effects of KN-93 on Kv channels can be circumvented by intracellular application of KN-93.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between dinucleotide and nicotinic receptors in individual cholinergic terminals.

Functional ionotropic nucleotidic receptors responding to diadenosine pentaphospate and nicotinic receptors responding to epibatidine coexpress in 19% of the total rat midbrain cholinergic terminals, as determined by the combination of immunological and microfluorimetric techniques. Activation of each independent receptor induces the intrasynaptosomal [Ca2+]i and acetylcholine (ACh) release in ...

متن کامل

Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism.

The primary mechanism for clearance of extracellular dopamine (DA) is uptake mediated by the dopamine transporter (DAT), which is governed, in part, by the number of functional DATs on the cell surface. Previous studies have shown that amphetamine (AMPH) decreases DAT cell surface expression, whereas insulin reverses this effect through the action of phosphatidylinositol 3-kinase (PI3K). Theref...

متن کامل

Acute inhibition of Ca2+/calmodulin-dependent protein kinase II reverses experimental neuropathic pain in mice.

The limited data that currently exist for the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neuropathic pain are conflicting. In the present study, we tested the hypothesis that CaMKII is required for the maintenance of neuropathic pain in a rodent model of experimental mononeuropathy. Spinal nerve L(5)/L(6) ligation (SNL) was found to increase the spinal activity of CaMKII ...

متن کامل

Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors.

To elucidate the functional link between Ca(2+)/calmodulin protein kinase II (CaMKII) and P2X receptor activation, we studied the effects of electrical stimulation, such as occurs in injurious conditions, on P2X receptor-mediated ATP responses in primary sensory dorsal root ganglion neurons. We found that endogenously active CaMKII up-regulates basal P2X3 receptor activity in dorsal root gangli...

متن کامل

Reversal of morphine antinociceptive tolerance and dependence by the acute supraspinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II.

Previous studies have suggested that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) can modulate opioid tolerance and dependence via its action on learning and memory. In this study, we examined whether CaMKII could directly regulate opioid tolerance and dependence. CaMKII activity was increased after the treatment with morphine (100 mg/kg s.c. or 75 mg s.c. of morphine/pellet/mouse); t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 317 1  شماره 

صفحات  -

تاریخ انتشار 2006